Exoplanet Research

Empirical Predictions for the Period Distribution of Planets

to be Discovered by TESS

The Nobel Prize in Physics 2019

New perspectives on our place in the universe

Peebles

Mayor

Queloz

October 1995, Michel Mayor and Didier Queloz Haute-Provence Observatory in France

51 Pegasi b: Exoplanet Orbiting Solar-type sta

Exoplanets Demography

Size Relative to Earth (Radius)

NASA/Ames Research Center/Natalie Batalha/Wendy Stenzel

4104

CONFIRMED

EXOPLANETS

Neptune-like Gas Giant

Super Earth

Terrestrial

Unknown

12/16 2019 https://exoplanets.nasa.gov/

What can we learn from exoplanets?

•1) Life outside the

Solar System

NASA/Ames Research Center/Wendy Stenzel 2) planetary formation and evolution

NASA/Kepler/Dan Fabricky

	76.4%	Transit			n 1995, Mayor and Queloz discovered the 1 st exoplane		
<u>-</u> M	19.1%	Radial Velocity			orbiting a s Haute-Prov France	rbiting a sun-like star. aute-Provence Observat rance	
A.A.	2.1%	Microlensin	g				
	1.1%	Imaging	Radi Tran Micru Imaq	al Velocity sits olensing ging		Kepler	
 0.51% Transit Timing Variations, 0.39% Eclipse Timing Variations, 0.17% Pulsar Timing, 0.15% Orbital Brightness Modulation, 0.05% Pulsation Timing Variations, 0.02% Disk Kinematics, 0.02% Astrometry 			Timi	ng Variation tal Brightne ulation ometry			

Radial Velocity

1.2 **Orbital Phase**

$$\Delta V_{\text{max}} = \left(\frac{2\pi G}{P}\right)^{1/3} \frac{M_P \sin I}{(M_P + M_S)^{2/3}}$$
$$\approx (12 \text{ m s}^{-1}) \left(\frac{P}{12 \text{ yr}}\right)^{-1/3} \left(\frac{M_P \sin I}{M_{\text{Jup}}}\right) \left(\frac{M_S}{M_{\text{Sun}}}\right)^{-2/3}$$

* 限制

- * sin i ambiguity
- * 半径未知
- * 假信号,恒星脉动

Radial Velocity

Table 1: HARPS spectrograph characteristics

* 精度

- ★ 1 m/s HARPS, 3.6m, — ESO, 智利La Silla天文台
- * 13 m/s 太阳 ― 木星
- ★ 0.09 m/s 太阳 地球
- 稳定性
 - ★ 真空 压力 < 0.01 mb</p>
 - * 温度 保持17℃,

0.01°C

空间劣势

Astrometry ——古老的方法

- * 18世纪~2009年: 0颗
- * 2010年10月: HD_176051 b Jovian planet
- * — Palomar Testbed Interferometer
- * 精度要求: ~0.05 mas precision

 $\Delta \theta_{\max} = \left(\frac{M_P/M_S}{d}\right) \left(\frac{G(M_P + M_S)P^2}{4\pi^2}\right)^{1/3}$ $\approx 0.5 \max\left(\frac{P}{12 \text{ yr}}\right)^{2/3} \left(\frac{M_P}{M_{\text{Jup}}}\right) \left(\frac{M_S}{M_{\text{Sun}}}\right)^{-2/3} \left(\frac{d}{10 \text{ pc}}\right)^{-1}$

- * 优势:对长轨道行星敏感、精确的轨道参数、质 量可知
- * 劣势:大气未知、行星半径未知

Imaging

- ▲ 难点1:恒星和行星光度的极端对比
 ▲ 解决方法
 - * 可见光、近红外 $L_{sun}/L_{Jupiter} = 10^8$
 - * 中红外,空间! $L_{sun}/L_{Jupiter} = 10^4$

T=5500K

T=5000K

T=4500K

T=4000K

T=3500K

1500

800

* 遮挡恒星,日冕仪

2M1207b, 2004年第一个成像法发现的系外行星

Imaging

* 下一代空间望远镜 WFIRST 搭载的日冕仪

Imaging

- * 难点2:分辨率
 - * 衍射极限 空间X, 地面 + 自适应光学
 - ★ 干涉 Aperture Masking Interferometry

JWST mask

imaging				
望远镜	数量			
Imaging 总计	45			
Palomar Observatory	12			
Gemini Observatory	8			
W. M. Keck Observatory	8			
Hubble Space Telescope	3			
Spitzer Space Telescope	3			
Subaru Telescope	3			

- * Spitzer 通过行星的红外光 测温度
- *** HD 189733b**
 - * 潮汐锁定
 - * 黑暗/阳光 650°C/930°C
 - * 强风 9600 km/h

Microlensing

Microlensing

* 原理

Extrasolar planet detected by gravitational microlensing

A sketch of a microlensing signature with a planet in the lens system. Image Credit: NASA / ESA / K. Sahu / STScl

Semi-major axis, stellar mass, stellar radius, planetary radius, eccentricity, inclination , planetary mass

Transit — — Kepler

Observing strategy:

Pipeline:

Transit — TESS

Launched April 18, 2018 Started science operations July 25, 2018

- * 10 cm aperture
- Bandpass: 600 1100 nm
- * 13.7-day elliptical orbit

https://heasarc.gsfc.nasa.gov/docs/tess/primary-science.html

Transit——TESS

Science Goal: Bright!

- Improve statistics for studies of the mass-radius relation of small planets as a function of distance from host stars.
- More temperate planets among which to select the best for atmospheric characterization with the JWST/ELTs

Image Credit: MIT

Villanueva, Dragomir & Gaudi (2019)

Transit — TESS

Single Transit

Stellar density Eccentric

Seager & Mallén-Ornelas (2003) Yee & Gaudi (2008)

Density: Gaia (Raidus) and spectroscopy/ asteroseismology (spectroscopy). *Eccentricity*: prior from known distribution).

Radial Velocity Prospects for Single-Transit Planets

 If period constrained well enough
 → get photometry to catch next transit
 Not well enough

→ use RV measurements to improve constraint

Detection Method and Statistic

- * habitable zone(green area)
- ~150 exoplanets detected in 2004
- * r.v. (blue)
 - transits (red)
 - microlensing (yellow)
 - pulsar timing (purple)
 - Imaging(magenta)

Our Project

•Empirical Predictions for the Period Distribution of Planets to be Discovered by TESS

Previous work :

My work:

Data of Kepler

Comparing the selection effect between two missions

Data of TESS

Methodology

Prob $(tr|P) = \int \frac{R_*}{a} f_{R_*,a|P}(R_*,a) dR_* da = \int \left(\frac{4\pi^2}{G}\right)^{\frac{1}{3}} R_* M_*^{-\frac{1}{3}} P^{-\frac{2}{3}} f_{R_*,M_*,|P}(R_*,M_*) dR_* dM_*$

1. Prob (tr | P)

The gray vertical line is 694.76 days beyond which the probability that it can be detected by Kepler is less than 10% and the pink vertical line is 503.10 days within which the probability is higher than 90%

2.
$$Prob(2Tr(\tau_{1}) | Tr, P)$$

$$Prob(Ntrs_{T}|P, tr) = \begin{cases} 0, & t \leq (N-1)P \\ 0, & t \leq (N-1)P, \\ \frac{t-(N-1)P}{P}, & (N-1)P < t < NP \\ 0, & t \geq N \cdot P \\ 0, & t \geq N +$$

SubSample		k (27 days)	k (54 days)	k (81 days)	k (108 days)	k (189 days)	k (351 days)
< 4500K	3974.41	0.0327	0.0463	0.0567	0.0655	0.0866	0.1180
> 4500K	5653.53	0.0621	0.0878	0.1075	0.1242	0.1643	0.2239

Methodology 3. Prob($SNR_T | 2Tr(\tau_1), Tr, P$)

 $f_{SNRTi}(SNR_T|P,tr) = f_{SNRTi}(k \cdot SNR_K|P,tr) = f_{SNRKi}(SNR_K|P,tr)$

 $f_{\text{SNRT}i}(\text{SNR}|P, tr) = f_{\text{SNRK}i}(\text{SNR}/k|P, tr)$

Methodology 3. Prob($SNR_T | 2Tr(\tau_1), Tr, P$)

 $Prob(TESS | P) = Prob(Tr | P) \times Prob(NTr(\tau_1) | Tr, P) \times Prob(SNR_T)$

 $NTr(\mathbf{\tau}_1)$

Tr, P)

Results

2. Results of different observation baseline

Results

Uncertainty

Uncertainty of approximating Ntrs

$$\mathbf{SNR} = \mathbf{R}_{p}^{2} \left(\frac{4\pi^{2} \mathbf{P}}{\mathbf{G} \mathbf{M}_{*}} \right)^{\frac{1}{6}} \sqrt{\frac{\mathbf{N}_{trs} \mathbf{A}}{4\mathbf{R}_{*} \mathbf{r}^{2}}} \int_{\lambda_{1}}^{\lambda_{2}} \tau \pi \mathbf{B}(\lambda, T_{*}) \left(\frac{\lambda}{hc} \right) d\lambda$$

Uncertainty

Uncertainty of Stellar Parameters

$$\operatorname{Prob}_{l}(P|TESS) = c_{l}\operatorname{Prob}_{l}(P|Kepler) \cdot \frac{\operatorname{Prob}(tr|P)}{\operatorname{Prob}(tr|P)} \cdot \frac{\operatorname{Prob}_{l}(Ntrs_{T}|P,tr)}{\operatorname{Prob}_{l}(Ntrs_{K}|P,tr)} \cdot \frac{\operatorname{Prob}_{l}(SNR_{T} > SNRT_{min}|P,tr)}{\operatorname{Prob}_{l}(SNR_{K} > SNRK_{min}|P,tr)}$$

$$\operatorname{Uncertainty of SNR model}_{SNR} = R_{p}^{2}P^{-\frac{1}{3}} \left(\frac{4\pi^{2}}{GM_{*}}\right)^{\frac{1}{6}} \sqrt{\frac{At_{m}}{4R_{*}r^{2}}} \int_{\lambda_{1}}^{\lambda_{2}} \tau\pi B(\lambda, T_{*}) \left(\frac{\lambda}{hc}\right) d\lambda}, \qquad 1000 \text{ times}$$

Comparison

Bright Future!

